
 

 

  
Abstract— Applying a definition of attribute conformance based 

on a similarity relation, we introduce an interpretation as a function 
associated to some fuzzy relation instance and defined on the 
universal set of attributes. As a consequence, the attributes become 
fuzzy formulas. Conjunctions, disjunctions and implications between 
the attributes become fuzzy formulas as well in view of the 
requirement that the interpretation has to agree with the minimum t-
norm, the maximum t-conorm and appropriately chosen fuzzy 
implication. The purpose of this paper is to derive a number of results 
related to these fuzzy formulas if the fuzzy implication is selected so 
to be either Reichenbach or some f-generated fuzzy implication.  
 

Keywords— Conformance, Fuzzy implications, Interpretations, 
Similarity relations.  

I. INTRODUCTION 
N this paper we relate fuzzy dependencies and fuzzy logic 
theories by joining fuzzy formulas to fuzzy functional and 

fuzzy multivalued dependencies. 
We research the concept of fuzzy relation instance that 

actively satisfies some fuzzy multivalued dependency. We 
determine the necessary and sufficient conditions needed to 
given two-element fuzzy relation instance actively satisfies 
some fuzzy multivalued dependency. In particular, for 
Reichenbach and some f-generated fuzzy implication 
operators, we prove that a two-element fuzzy relation instance 
actively satisfies given fuzzy multivalued dependency if and 
only if: 

1) tuples of the instance are conformant on certain, well 
known set of attributes with degree of conformance greater 
than or equal to some explicitly known constant, 

2) related fuzzy formula is satisfiable in appropriate 
interpretations. 

Finally, for Reichenbach and some f-generated fuzzy 
implication operators, we prove that any two-element fuzzy 
relation instance which satisfies all dependencies from the set 
F satisfies the dependency f  if and only if satisfiability of all 
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formulas from the set ′F  implies satisfiability of the formula 
f ′ . Here, f ∉F  is a fuzzy functional or a fuzzy multivalued 

dependency, F  is a set of fuzzy functional and fuzzy 
multivalued dependencies, ′F  resp. f ′  denote the set of fuzzy 
formulas resp. the fuzzy formula related to F  resp. f . 

II. PRELIMINARIES 
We introduce the minimum t-norm (see. e.g., [11], [9], 

[12]), the maximum t-conorm (see. e.g., [11], [7]) as follows 
 

 ( ) ( ) ( )( )p&q min p , q=T T T , 

 
 ( ) ( ) ( )( )p q max p , q=T T T , 

 
where ( )0 p≤T , ( )q 1≤T . Here, ( )mT  is the truth value od 
m . 
 An interpretation   is said to satisfy resp. falsify formula 

f  if ( ) 1f
2

≥T  resp. ( ) 1f
2

≤T  under   (see. e.g., [13]). 

 We introduce the notation following similarity-based fuzzy 
relational database approach [16] (see also, [3]-[5]). 
 A similarity relation on D  is a mapping [ ]: 0,1× →s D D  
such that (see, [21]) 
 

        ( )x,x 1=s , 
 

                    ( ) ( )x, y y,x=s s , 
 

( ) ( ) ( )( )( )
y

x,z max min x, y , y,z
∈

≥
D

s s s , 

 
where D  is a set and x, y,z∈D . 
 Let ( ) ( )1 2 n, ,...,=R U R     be a scheme on domains 

1 2 n, ,...,D D D  where U  is the set od all attributes 1 2 n, ,...,    
on 1 2 n, ,...,D D D  (we say that U  is the universal set of 
attributes). Here, we assume that the domain of i  is the finite 
set iD , i 1,2,...,n= . 
 A fuzzy relation instance r  on ( )R U  is defined as a subset 

of the cross product of the power sets 12D , n22 ,...,2DD  of the 
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domains of the attributes. A member of a fuzzy relation 
instance corresponding to a horizontal row of the table is 
called a tuple. More precisely, a tuple is an element t  of r  of 
the form ( )1 2 n, ,...,d d d , where i i⊆d D , i ≠∅d  (see also, [8]). 
Here, we consider id  as the value of i  on t . 

Recall that the similarity based database approach allows 
each domain to be equipped with a similarity relation. 

The conformance of attribute defined on domain D  for 
any two tuples 1t  and 2t  present in relation instance r  and 

denoted by 1 2t ,t  is defined by 
 

 ( ){ } ( ){ }1 2

1 2 2 1

t ,t

x y x y
min min max x, y ,min max x, y

∈ ∈ ∈ ∈

    =     
    d d d d

s s , 

 
where 1d  denote the value od attribute   for tuple it , i 1,2=  
and [ ]: 0,1× →s D D  is a similarity relation on D . 

 If 1 2t ,t q≥ , where 0 q 1≤ ≤ , than the tuples 1t  and 2t  are 
said to be conformant on attribute   with q . 
 The conformance of attribute set   for any two tuples 1t  
and 2t  present in fuzzy relation instance r and denoted by 

1 2t ,t is defined by 
 { }1 2 1 2t ,t t ,tmin

∈
=
 

  . 

 Obviously: 1) t ,t 1=   for any t  in r , 
2) If ⊇  , then 1 2 1 2t ,t t ,t≥   for any 1t  and 2t  in r , 

3) If ( )1 2 m, ,..,=     and 1 2t ,t
k q≥  for all { }k 1,2,...,m∈ , 

then 1 2t ,t q≥  for any 1t  and 2t  in r . 
Let r  be any fuzzy relation instance on scheme 
( )1 2 n, ,...,R    , U  be the universal set of attributes 

1 2 n, ,...,    and ,   be subsets of U . 
Fuzzy relation instance r  is said to satisfy the fuzzy 

functional dependency F
θ→   if for every pair of tuples 1t  

and 2t  in r , ( )1 2 1 2t ,t t ,tmin ,θ≥  . 

Fuzzy relation instance r  is said to satisfy the fuzzy 
multivalued dependency F

θ→ →   if for every pair of 
tuples 1t  and 2t  in r , there exists a tuple 3t  in r  such that: 

 

                          

( )
( )
( )

3 1 1 2

3 1 1 2

3 2 1 2

t ,t t ,t

t ,t t ,t

t ,t t ,t

min , ,

min , ,

min , ,

θ

θ

θ

≥

≥

≥

 

 

 

                               (1) 

 
where = −U  . Here −U  means ( )∪  U . 
Moreover, 0 1θ≤ ≤  describes the linguistic strength of the 
dependency. Namely, some dependencies are precise, some of 
them are not, some dependencies are more precise than the 
other ones. Therefore, the linguistic strength of the 

dependency gives us a method for describing imprecise 
dependencies as well as precise ones. 

Fuzzy relation instance r  is said to satisfy the fuzzy 
multivalued dependency F

θ→ →  , θ -actively if r  satisfies 
that dependency and if 1 2t ,t θ≥  for all ∈   and all 1 2t ,t ∈r . 

It follows immediately that the instance r  satisfies the 
dependency F

θ→ →  , θ -actively if and only if r  satisfies 

F
θ→ →  and 1 2t ,t θ≥ for all 1 2t ,t ∈r . 

Let { }1 2t ,t=r  be any two-element fuzzy relation instance 

on scheme ( )1 2 n, ,...,R     and 0 1ε≤ ≤ . 

 A mapping ε
rv :{ } [ ]1 2 n, ,..., 0,1→    such that 

 

( )k
1
2ε >rv   if 1 2t ,t ε≥ , 

( )k
1
2ε ≤vr  if 1 2t ,t ε< , 

k 1,2,...,n= , is called a valuation (or an interpretation) joined 
to r  and ε . 
 

III. RESULTS 

Let F
θ→  ( )F

θ→ →  be some fuzzy functional 

dependency (fuzzy multivalued dependency) on U , where U  
is the universal set of attributes 1 2 n, ,..,   and 

( )1 2 n, ,...,R    is a scheme. 
In this paper we associate the fuzzy formula 
 

 ( )& &
∈ ∈

 → 
   

   

to F
θ→  and the fuzzy formula 

 

 ( ) ( )& & &
∈ ∈ ∈

  →     


   
    

 
to F

θ→ →  , where = −U  . 
Through the rest of the section, we assume that the fuzzy 

implication operator is given either by 
 

 ( ) ( ) ( )pp q q→ = TT T  
 
if ( )p 0≠T  or ( )q 0≠T , ( )p q 1→ =T  if ( )p 0=T and ( )q 0=T , 
or by 
 ( ) ( ) ( ) ( )p q 1 p p q→ = − +T T T T . 
 

Note that the first fuzzy implication operator is known as 
Yager's (Y) operator (see, [19]). It is a typical example of f-
generated fuzzy implication operator (see, [15], [20]). The 
second fuzzy implication operator is widely-known as Kleene-
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Dienes-Lukasiewicz operator or Reichenbach (R) operator 
(see, [14]). It represents a classical example of strong (S) and 
quantum logic (QL) implication (see, [15], [17], [18]). We 
refer to [6],  [10] and [1] as well. In general, classes of fuzzy 
implication operators are very nicely described in [2] and [15]. 

 
Theorem 1. Let { }1 2t ,t=r  be any two-element fuzzy relation 

instance on scheme ( )1 2 n, ,...,R    , U be the universal set 
of attributes 1 2 n, ,...,   and ,   be subsets of U . Let 

= −U  . Then, r  satisfies the fuzzy multivalued 

dependency F
θ→ →  , θ -actively if and only if 1 2t ,t θ≥  

and ( ) 1
2θ >vr  , where   denotes the fuzzy formula 

( ) ( ) ( )( )Y& & &∈ ∈ ∈→        associated to F
θ→ →  . 

 
Proof: (for Y ) First, we prove that r  satisfies F

θ→ →  ,  
θ -actively if and only if 1 2t ,t θ≥ , 1 2t ,t θ≥  or 1 2t ,t θ≥ , 

1 2t ,t θ≥ . 
Suppose that the instance r  satisfies the dependency 

F
θ→ →  ,θ -actively. Now, 1 2t ,t θ≥  and there is a tuple 

3t ∈r  such that the conditions given by (1) hold true, i.e., that 
3 1t ,t θ≥ , 3 1t ,t θ≥ , 3 2t ,t θ≥ . Hence, if 3 1t t= , then 
1 2t ,t θ≥ . Else, if 3 2t t= , then 1 2t ,t θ≥ . 

Let 1 2t ,t θ≥ , 1 2t ,t θ≥  . Hence, ( )1 2t ,tmin ,θ θ= . Now, 

there is 3t ∈r , 3 2t t=  such that 3 1t ,t θ≥ , 3 1t ,t θ≥ , 
3 2t ,t 1 θ= ≥ , i.e., (1) holds true. Analogously, if 1 2t ,t θ≥ , 
1 2t ,t θ≥ , then ( )1 2t ,tmin ,θ θ= . Moreover, there is 3t ∈r , 

3 1t t=  such that 3 1t ,t 1 θ= ≥ , 3 1t ,t 1 θ= ≥ , 3 2t ,t θ≥ . 
Therefore, (1) holds true. Now, since r  satisfies the 
dependency F

θ→ →   and 1 2t ,t θ≥ , it follows that the 

instance r  satisfies the dependency F
θ→ →  ,θ -actively. 

Now, we prove the main assertion. 
( )⇒ Suppose that r  satisties F

θ→ →  , θ -actively. We 

have, 1 2t ,t θ≥ , 1 2t ,t θ≥   or 1 2t ,t θ≥ , 1 2t ,t θ≥ . 
 Suppose that 1 2t ,t θ≥ , 1 2t ,t θ≥ . Now, 
 
 { }1 2 1 2t ,t t ,tmin θ

∈
= ≥

 
  , 

 

{ }1 2 1 2t ,t t ,tmin θ
∈

= ≥
 

  . 

 
Hence, 1 2t ,t θ≥  for all ∈   and 1 2t ,t θ≥  for all ∈  . 

Therefore, ( ) 1
2θ >vr    for ∈  , ( ) 1

2θ >vr   for ∈  . 

Now, 

( ) ( ){ } 1& min
2θ θ

∈
= ∈ >

 
   v vr r , 

 

( ){ } 1& min
2θ θ

∈

  = ∈ > 
 

v vr r

 
    . 

 
We obtain, 

 ( ) ( ) ( )& & &θ θ
∈ ∈ ∈

   = →       
v vr r

     
     

 

               
( ) ( )

( ) ( )

&

&

& &

max & , & .

θ

θ

θ

θ θ

∈

∈

∈ ∈

∈ ∈

  =     

  =     



 

 



   



   

 

 

v

v

v

v v

r

r

r

r r

 

 
Denote ( )a &θ ∈= vr

   , ( ) ( )( )b max & , &θ θ∈ ∈= v vr r
     . 

Since  ( ) 1&
2θ ∈ >vr

    and ( ) 1&
2θ ∈ >vr

   , we have that 

1 1a , b
2 2

> > . 

Now, ( ) 1
2θ >vr   if and only if a 1b

2
> . 

If b 1= , then a 1b
2

>  holds true and hence ( ) 1
2θ >vr  . 

Let 1 b 1
2

< < . Now, a 1b
2

>  if and only if b
1a log
2

< . The 

last inequality is true since b
1log 1
2

> . Therefore, ( ) 1
2θ >vr  . 

Similarly, if 1 2t ,t θ≥ , 1 2t ,t θ≥   then, ( ) 1&
2θ ∈ >vr

    

and ( ) 1&
2θ ∈ >vr

    . Now, reasoning as in the previous case, 

we conclude that 1 1a , b
2 2

> >  and hence ( ) 1
2θ >vr  . 

( )⇐  Suppose that 1 2t ,t θ≥  and ( ) 1
2θ >vr  . We have 1a

2
>  

and then a 1b
2

> . 

If b 0= , then 10
2

> , i.e., a contradiction. Hence, 0 b 1< ≤ . 

If b 1= , then a 1b
2

>  holds true. 

Let 0 b 1< < . We have a 1b
2

>  if and only if b
1a log
2

< . The 

last inequality is satisfied for 1 b 1
2

< < . We conclude, 1b
2

> . 

If ( )b &θ ∈= vr
   , then ( ) 1

2θ >vr   for all ∈  . Hence, 

1 2t ,t θ≥  for ∈  . Now, 1 2t ,t θ≥ . Therefore, 1 2t ,t θ≥  and 
1 2t ,t θ≥  yield the result. 
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Analogously, if ( )b &θ ∈= vr
   , then 1 2t ,t θ≥ . Now, 1 2t ,t θ≥ , 

1 2t ,t θ≥  yield the result. This completes the proof.                
 
Proof: (for R) 
( )⇒ Assume that r  satisfies the dependency F

θ→ →  ,θ -
actively.  
 Now, 1 2t ,t θ≥ , 1 2t ,t θ≥  or 1 2t ,t θ≥ , 1 2t ,t θ≥ . 
 Let 1 2t ,t θ≥  and 1 2t ,t θ≥  hold true. We have, 
 

{ }1 2 1 2t ,t t ,tmin θ
∈

= ≥
 

   

and 

{ }1 2 1 2t ,t t ,tmin θ
∈

= ≥
 

  . 

 
Therefore, 1 2t ,t ,θ≥ ∈    and 1 2t ,t ,θ≥ ∈   . 

Consequently, ( ) 1
2θ >vr  , ∈   and ( ) 1

2θ >vr , ∈  . We 

obtain, 

( ) ( ){ } 1& min
2θ θ

∈
= ∈ >

 
   v vr r  

and 

( ){ } 1& min
2θ θ

∈

  = ∈ > 
 

v vr r

 
    . 

We have, 

( ) ( ) ( )& & &θ θ
∈ ∈ ∈

   = →       
v vr r

     
     

 

            

( ) ( )
( )

( ) ( )
( )

1 & &

& &

1 & &

max & , & .

θ θ

θ

θ θ

θ θ

∈ ∈

∈ ∈

∈ ∈

∈ ∈

= − + ⋅

  
    

= − + ⋅

  
    



   

   

   

   

 

 

 

 

v v

v

v v

v v

r r

r

r r

r r

 

 
Put ( )a &θ ∈= vr

   , ( ) ( )( )b max & , &θ θ∈ ∈= v vr r
     . 

 Now, ( ) 1&
2θ ∈ >  vr , ( ) 1&

2θ ∈ >vr
   , yield 1 1a , b

2 2
> > . 

Hence, 1 a 1
2

< ≤  and then 2a 2≤ . We obtain, 1 1
2a 2

≥ . Since 

1a 0
2

> > , we have that ( ) 1
2θ >vr   if and only if 11 a ab

2
− + >  

if and only if 1 ab a
2

+ >  if and only if 1 b 1
2a

+ > , which is 

true. Hence, ( ) 1
2θ >vr  . 

 Similarly, if 1 2t ,t θ≥  and 1 2t ,t θ≥ , then ( ) 1&
2θ ∈ >vr

    

and ( ) 1&
2θ ∈ >vr

   . Now, 1 11 a 0, b
2 2

≥ > > >  and hence 

1 b 1
2a

+ >  holds true. Therefore, ( ) 1
2θ >vr  . 

( )⇐  Let 1 2t ,t θ≥ , ( ) 1
2θ >vr  . Now, 10 a 1

2
< < ≤ . hence, 

( ) 1
2θ >vr   if and only if 1 b 1

2a
+ > . Therefore, 1 1

2a 2
≥  

implies that 1b
2

> . 

 If ( )b &θ ∈= vr
   , then ( ) 1

2θ >vr  , ∈  . Consequently, 

1 2t ,t ,θ≥ ∈   . Now, 1 2t ,t θ≥ . Hence, 1 2t ,t θ≥ , 1 2t ,t θ≥  
yield the result. 
 Similarly, if we assume that ( )b &θ ∈= vr

   , we obtain that 
1 2t ,t θ≥ . Since 1 2t ,t θ≥ , the theorem follows. This completes 

the proof.                                                                                  
 
Theorem 2. Let f ∉F  be a fuzzy functional or a fuzzy 
multivalued dependency on a set of attributes U , where F is a 
set of fuzzy functional and fuzzy multivalued dependencies on 
U . Let ′F  resp. f ′  be the set of fuzzy formulas resp. the 
fuzzy formula related to F resp. f . The following two 
conditions are equivalent: 
(a) Any two-element fuzzy relation instance on scheme ( )R U   
which satisfies all dependencies from the set F  satisfies also 
the dependency f . 

(b) ( ) 1f
2ε ′ >vr  for every εvr  suct that ( ) 1

2ε >vr   for all 

′∈F . 
 
Proof: (for Y) We denote f  by 1

F
θ→   when f  is a fuzzy 

functional dependency and by 1
F

θ→ →   when f is a fuzzy 

multivalued dependency. Therefore, ( ) ( )& &∈ ∈→       

and ( ) ( ) ( )( )& & &∈ ∈ ∈→         will denote f ′  in the 

first and the second case, respectively, where = −U  . 
We may assume that the set { }p,q  is the domain of each of 

the attributes in U . 
Fix some [ )0,θ θ′′ ′∈ , where θ ′  is the minimum of the 

strengths of all dependencies that appear in { }f∪F . Suppose 
that 1θ ′< . Namely, if 1θ ′= , then every dependency 

{ }1f f∈ ∪F  is of the strength 1 . This case is not interesting 
however. 

Define ( ) ( )p,q q, p θ ′′= =s s   to be a similarity relation on 

{ }p,q . 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 12, 2018

ISSN: 1998-4464 288



 

 

( ) ( )a b⇒  Suppose that ( )b  is not valid. 

Now, there is some εvr  such that ( ) 1
2ε >vr   for all ′∈F  

and ( ) 1f
2ε ′ ≤vr  . Here, εvr   is joined to some two-element fuzzy 

relation instance { }1 2t ,t=r  on ( )R U  and some 0 1ε≤ ≤ .  

Define ( ) 1W
2ε

 
= ∈ > 

 
rU v   . 

Assume that W =∅ . In this case, ( ) 1
2ε ≤rv  for all ∈ U . 

Hence, ( ) 1& 1
2ε ∈ ≤ <vr

    for any ⊆ U . 

If ( )& 0ε ∈ =vr
   , ( )& 0ε ∈ =vr

    resp. ( )& 0ε ∈ =vr
   , 

( ) ( )( )& & 0ε ∈ ∈ =vr
      , then ( ) 1f

2ε ′ ≤vr  yields 11
2

≤ , 

i.e., a contradiction. Hence, ( )& 0ε ∈ ≠vr
    or ( )& 0ε ∈ ≠vr

    

resp. ( )& 0ε ∈ ≠vr
    or ( ) ( )( )max & , & 0ε ε∈ ∈ ≠v vr r

     . 

We may assume that ( )& 0ε ∈ ≠vr
    resp. 

( ) ( )( )max & , & 0ε ε∈ ∈ ≠v vr r
     . Now, ( ) 1f

2ε ′ ≤vr  implies 

 

 
( )& 1&

2

ε

ε

∈

∈

  ≤ 
 

v
v

r

r
  

 
   (2) 

resp. 

 ( )
( )& 1max & , &

2

ε

ε ε

∈

∈ ∈

   ≤    

v

v v
r

r r
  

   
  , (3) 

i.e.,  

 ( ) ( )&
1& log
2ε

ε
∈∈

≥ vv r
r

   
   (4) 

resp. 

 ( ) ( ) ( )( )max & , &
1& log
2ε ε

ε
∈ ∈∈

≥ v vv r r
r

     
  . (5) 

 

Therefore, ( ) 10 &
2ε ∈ ≤< vr

    resp. 

( ) ( )( ) 10 max & , &
2ε ε∈ ∈< ≤v vr r

      yields ( )& 1ε ∈ =vr
   . 

This is contradiction. Hence, W ≠∅ . 

 Assume that W =U . In this case, ( ) 1
2ε >vr   for all ∈U . 

Consequently, ( ) 1&
2ε ∈ >vr

    for all ∈ U . 

 Now, (2) resp. (3) holds true. 
 If ( )& 1ε ∈ =vr

    resp. ( ) ( )( )max & , & 1ε ε∈ ∈ =v vr r
     , 

then 11
2

≤ , i.e., a contradiction. Hence, (4) resp. (5) holds 

true. Therefore, ( )1 & 1
2 ε ∈< <vr

    resp. 

( ) ( )( )1 <max & , & 1
2 ε ε∈ ∈ <v vr r

      yields 

( )& 1ε ∈ >vr
   . This is a contradicton. We obtain, W ≠U . 

 Define { }t ,t′ ′ ′′=r  by Table 1 below. 

′r  is a two-element fuzzy relation instance on ( )R U . 
 We shall prove that this instance satisfies all dependencies 
from the set F , but violates the dependency f . 

Let 2
F

θ→   be any fuzzy functional dependency from te 
set F . 

Table 1: 
              attributes of W                           other attributes 
  t′              p, p,..., p                                     p, p,..., p  
  t′′              p, p,..., p                                     q,q,...,q  
 

 Assume that ( ) 1&
2ε ∈ ≤vr

   . Then, there exists 

0 ∈  such that 

( ) ( ){ } ( )0
1min &
2ε ε ε

∈
= ∈ = ≤v v vr r r

 
      , 

 
i.e., 0 W∉ . We have t ,t

0 θ′ ′′ ′′=  and hence 
 
 { }t ,t t ,tmin θ′ ′′ ′ ′′

∈
′′= =

 
  . 

 
Since ( )p,q θ ′′=s , we know that t ,t θ′ ′′ ′′≥  for any set of 

attributes ∈ U . Therefore, t ,t θ′ ′′ ′′≥ . We obtain, 
 
 ( )t ,t t ,t

2min ,θ θ′ ′′ ′ ′′′′≥ =  , 

i.e., ′r  satisties 2
F

θ→  . 

 Assume that ( ) 1&
2ε ∈ >vr

   . Now, 

 

 ( ) ( ) ( ) ( )& 1& = & &
2

ε

ε ε
∈

∈ ∈ ∈

 → > 
 

v
v v

r

r r  

     
   . 

 
The last inequality is satisfied if ( )& 1ε ∈ =vr

   . If 

( )& 0ε ∈ =vr
   , then 10

2
> , i.e., a contradiction. 

 Let ( )0 & 1ε ∈< <vr
   . We have, 

 

 ( ) ( )&
1& log
2ε

ε
∈∈

< vv r
r

   
 . 

 

Therefore, ( ) 1&
2ε ∈ >vr

   . Now, ( ) 1
2ε >vr   for all ∈   

and then W∈  for ∈  . We obtain, ⊆  . Hence, 
t ,t 1′ ′′ = . We have, 
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 ( )t ,t t ,t
21 min ,θ′ ′′ ′ ′′= ≥  , 

 

i.e., ′r  satisfies the dependency 2
F

θ→  . 

Let 2
F

θ→ →   by any fuzzy multivalued dependency from 
te set F . 

 Suppose that ( ) 1&
2ε ∈ ≤  vr . Then, reasoning as in the 

previous case, we obtain that t ,t θ′ ′′ ′′= . 
Hence, there is t′′′ ′∈r , t t′′′ ′=  such that 
 

 

( )
( )

( )

t ,t t ,t
2

t ,t t ,t
2

t ,t t ,t
2

1 min , ,

1 min , ,

min , ,

θ

θ

θ θ

′′′ ′ ′ ′′

′′′ ′ ′ ′′

′′′ ′′ ′ ′′

= ≥

= ≥

′′≥ =

 

 

 

 (6) 

 
where = − U . Therefore, ′r  satisfies 2

F
θ→ →  . 

 Let ( ) 1&
2ε ∈ >vr

   . Now, 

 ( ) ( ) ( )&
max & , &

ε

ε ε

∈

∈ ∈

 
 
 

v
v v

r

r r
 

   
   

 

 

( ) ( ) ( )

( ) ( ) ( )

&
& &

1& & & .
2

ε

ε

ε

∈

∈ ∈

∈ ∈ ∈

 = 
 

  = → >    





v
v

v

r

r

r

 

   

    

 

  

 

 
This inequality is satisfied if ( ) ( )( )max & , & 1ε ε∈ ∈ =v vr r

     . 

If ( ) ( )( )max & , & 0ε ε∈ ∈ =v vr r
     , then 10

2
> , i.e., a 

contradiction. 
 If ( ) ( )( )0<max & , & 1ε ε∈ ∈ <v vr r

     , then 

 

 ( ) ( ) ( )( )max & , &

1& <log
2ε ε

ε
∈ ∈

∈ v v
v

r r

r

   
  

 . 

 

Therefore, ( ) ( )( ) 1max & , &
2ε ε∈ ∈ >v vr r

     . Hence, 

 ( ) 1&
2ε ∈ >vr

   or ( ) 1&
2ε ∈ >vr

  . 

 If ( ) 1&
2ε ∈ >vr

  , then ⊆   and hence t ,t 1′ ′′ = . 

Similarly, since ( ) 1&
2ε ∈ >vr

  , we conclude that t ,t 1′ ′′ = . 

Now, there is t′′′ ′∈r , t t′′′ ′′=  such that 

 

( )
( )

( )

t ,t t ,t
2

t ,t t ,t
2

t ,t t ,t
2

1 min , ,

1 min , ,

1 min , .

θ

θ

θ

′′′ ′ ′ ′′

′′′ ′ ′ ′′

′′′ ′′ ′ ′′

= ≥

= ≥

= ≥

 

 

 

 (7) 

 
Hence, ′r  satisfies 2

F
θ→ →  . 

 If ( ) 1&
2ε ∈ >vr

   , then t ,t 1′ ′′ = . In this case, there is 

t′′′ ′∈r , t t′′′ ′=  such that (7) holds true. In other words, ′r  
satisfies the dependency 2

F
θ→ →  . 

 It remains to prove that the instance ′r  violates 1
F

θ→   

resp. 1
F

θ→ →  . 
 Let  

 ( ) ( ) 1& & f
2ε ε

∈ ∈

   ′→ = ≤      
 v vr r . 

 

If  ( )& 0ε ∈ =  vr  and ( )& 0ε ∈ =vr
   , then 11

2
≤ , i.e., a 

contradiction. Hence, ( )& 0ε ∈ ≠vr
    or ( )& 0ε ∈ ≠vr

   . We 

may assume that ( )& 0ε ∈ ≠vr
   . Now, 

 

 
( )& 1&

2

ε

ε

∈

∈

  ≤ 
 

v
v

r

r
  

 
 . 

 

If ( )& 1ε ∈ =vr
   , then 11

2
≤ , i.e., a contradiction. Therefore, 

( )0 & 1ε ∈< <vr
   . We obtain, 

 ( ) ( )&
1& log
2ε

ε
∈∈

≥ vv r
r

   
 . 

 

If ( ) 1&
2ε ∈ >vr

   , then ( )& 1ε ∈ >vr
   , i.e., a contradiction. 

Hence, ( ) 10 &
2ε ∈< ≤vr

    and then ( )& 1ε ∈ =vr
   . Now, as 

before, we conclude that t ,t θ′ ′′ ′′=  and t ,t 1′ ′′ = . Therefore, 
 
 ( )t ,t t ,t

1 1min ,θ θ θ θ′ ′′ ′ ′′′′ ′= < ≤ =  . 
 

This means that ′r  violates  1
F

θ→  . 
 Now, let 

 ( ) ( ) ( ) 1& & & f
2ε ε

∈ ∈ ∈

    ′→ = ≤      
v vr r

    
   . 

 
Reasoning as in the previous case, we conclude that 
 ( )& 0ε ∈ ≠vr

    or ( ) ( )( )max & , & 0ε ε∈ ∈ ≠v vr r
     . We have, 
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 ( )
( )& 1max & , &

2

ε

ε ε

∈

∈ ∈

   ≤    

v

v v
r

r r
  

   
  . 

Then, ( ) ( )( ) 10<max & , &
2ε ε∈ ∈ ≤v vr r

      and ( )& 1ε ∈ =vr
   , 

i.e., ( ) 1&
2ε ∈ ≤vr

   , ( ) 1&
2ε ∈ ≤vr

   , ( )& 1ε ∈ =vr
   . We obtain, 

t ,t t ,t t ,t, , 1θ θ′ ′′ ′ ′′ ′ ′′′′ ′′= = =   . 
 If t′′′ ′∈r , t t′′′ ′= , then 
 

 

( )
( )

( )

t ,t t ,t
1

t ,t t ,t
1

t ,t t ,t
1 1

1 min , ,

1 min , ,

min , .

θ

θ

θ θ θ θ

′′′ ′ ′ ′′

′′′ ′ ′ ′′

′′′ ′′ ′ ′′

= ≥

= ≥

′′ ′= < ≤ =

 

 

 

 (8) 

 
If  t′′′ ′∈r , t t′′′ ′′= , then 
 

 

( )
( )

( )

t ,t t ,t
1

t ,t t ,t
1 1

t ,t t ,t
1

1 min , ,

min , ,

1 min , .

θ

θ θ θ θ

θ

′′′ ′ ′ ′′

′′′ ′ ′ ′′

′′′ ′′ ′ ′′

= ≥

′′ ′= < ≤ =

= ≥

 

 

 

 (9) 

 
In other words, the instance ′r  violates 1

F
θ→ →  . 

 
( ) ( )b a⇒  Suppose that (a) is not valid. 
 Now, there is a two-element fuzzy relation instance 

{ }t ,t′ ′ ′′r =  on scheme ( )R U , such that ′r  satisfies all 
dependencies in F  and ′r  does not satisfy f . Therefore, ′r  

does not satisfy 1
F

θ→   resp. 1
F

θ→ →  . 

 Define { }t ,tW 1′ ′′= ∈ = U . 

 Assume that W =∅ . Now, t ,t θ′ ′′ ′′=  for all ∈U . 
Therefore, t ,t θ′ ′′ ′′=  for all ⊆ U . 

 In the case when ′r  does not satisfy 1
F

θ→  , we obtain 
 
 ( )t ,t t ,tmin ,θ′ ′′ ′ ′′′<  , 

i.e., ( )1min ,θ θ θ θ′′ ′′ ′′< = . This is a contradiction. 

 Similarly, in the case when ′r  does not satisfy 1
F

θ→ →  , 
we have that the conditions 

 

( )
( )
( )

t ,t t ,t
1

t ,t t ,t
1

t ,t t ,t
1

min , ,

min , ,

min ,

θ

θ

θ

′ ′ ′ ′′

′ ′ ′ ′′

′ ′′ ′ ′′

≥

≥

≥

 

 

 

 (10) 

 

don’t hold simultaneously. Since the first and the second 
condition in (10) hold obviously true, we obtain 
 
 ( ) ( )t ,t t ,t

1 1min , min ,θ θ θ θ θ′ ′′ ′ ′′′′ ′′ ′′= < = =  , 

 
which is a contradiction. Therefore, W ≠∅ . 
 Assume that W =U . Now, t ,t 1′ ′′ =  for every ∈ U . 
Therefore, t ,t 1′ ′′ =  for every ⊆ U . 

 In the case when ′r  does not satisfy 1
F

θ→  , we have that 
 
 ( ) ( )t ,t t ,t

1 1 11 min , min ,1θ θ θ′ ′′ ′ ′′= < = =  . 

This is a contradiction. 
 In the case when ′r  does not satisfy 1

F
θ→ →  , the 

conditions given by (10) don’t hold simultaneously. The first 
and the second condition in (10) are always satisfied, hence 
 
 ( ) ( )t ,t t ,t

1 1 11 min , min ,1θ θ θ′ ′′ ′ ′′= < = =  . 

 
This is a contradiction. We conclude, W ≠U . 
 Now, we define 1

′vr  in the following way. Let 
 

 ( )1
1 1
2

′< ≤vr   if W∈ , 

 ( )1
10
2

′≤ ≤vr   if W∈ − U . 

 

We shall prove that ( )1
1
2

′ >rv  for every ′∈F  and ( )1
1f
2

′ ′ ≤vr . 

 Suppose that ′∈F  is of the form 

 ( ) ( )& &
∈ ∈

→
  
  . 

 
This fuzzy formula corresponds to some fuzzy functional 
dependency 2

F
θ→   from the set F . 

 Suppose, that ( )1
1
2

′ ≤rv . Then, as earlier, it follows that 

( )1 & 0′
∈ ≠vr
    or  ( )1 & 0′

∈ ≠vr
  . 

 Assume that ( )1 & 0′
∈ ≠vr
  . We have , 

 

 ( ) ( )1 &

1
1&
2

′
∈′

∈
≤

v
v

r

r  

 
 . 

 
Then, ( )1 & 1′

∈ <vr
  . We obtain, 

 ( ) ( )1
1 &

1& log
2

′
∈

′

∈
≥ vv r

r
  

 . 

 

Therefore, ( )1
10 &
2

′
∈< ≤vr
   and ( )1 & 1′

∈ =vr
  , i.e., 

t ,t θ′ ′′ ′′=  and t ,t 1′ ′′ = .  
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We obtain, 
( ) ( )t ,t t ,t

2 2 2min ,1 min ,θ θ θ θ θ′ ′′ ′ ′′′′ ′= < ≤ = =  , 

 
which contradicts the fact that ′r  satisfies 2

F
θ→  . 

Therefore,  ( )1
1
2

′ >vr  . 

 Suppose that ′∈F  is of the form 
 

 ( ) ( ) ( )& & &
∈ ∈ ∈

 → 
 



    
   , 

 
where = U- . This fuzzy formula corresponds to some 
fuzzy multivalued dependency 2

F
θ→ →   from the set  F . 

 Assume that ( )1
1
2

′ ≤vr  . 

 As before, we have that ( )1 & 0′
∈ ≠vr
   or 

( ) ( )( )1 1max & , & 0′ ′
∈ ∈ ≠v vr r
     . 

 Suppose that ( ) ( )( )1 1max & , & 0′ ′
∈ ∈ ≠v vr r
     . We have, 

 ( ) ( ) ( )1 &

1 1
1max & , &
2

′
∈

′ ′

∈ ∈

  ≤ 
 

v
v v

r

r r
 

   
  . 

 
Then, ( ) ( )( )1 1max & , & 1′ ′

∈ ∈ <v vr r
     . We obtain, 

 

 ( ) ( ) ( )( )1 1
1 max & , &

1& log
2

′ ′
∈ ∈

′

∈
≥ v vv r r

r
     

 . 

 

Therefore, ( ) ( )( )1 1
10 max & , &
2

′ ′
∈ ∈< ≤v vr r
      and 

( )1 & 1′
∈ =vr
  , i.e., ( )1

1&
2

′
∈ ≤vr
  , ( )1

1&
2

′
∈ ≤vr
  , 

( )1 & 1′
∈ =vr
  . Hence, t ,t θ′ ′′ ′′= , t ,t θ′ ′′ ′′= , t ,t 1′ ′′ = . In 

the case, the third condition of the conditions 
 

 

( )
( )

( )

t ,t t ,t
2

t ,t t ,t
2

t ,t t ,t
2

min , ,

min , ,

min ,

θ

θ

θ

′ ′ ′ ′′

′ ′ ′ ′′

′ ′′ ′ ′′

≥

≥

≥

 

 

 

 (11) 

 
does not hold. Furthermore, the second condition of the 
conditions 

 

( )
( )

( )

t ,t t ,t
2

t ,t t ,t
2

t ,t t ,t
2

min , ,

min , ,

min ,

θ

θ

θ

′′ ′ ′ ′′

′′ ′ ′ ′′

′′ ′′ ′ ′′

≥

≥

≥

 

 

 

 (12) 

 

does not hold. This contradicts the fact that  ′r  satisfies the 

dependency  2
F

θ→ →  . Hence, ( )1
1
2

′ >vr  . 

 It remains to prove that ( )1
1f
2

′ ′ ≤vr . 

 Suppose that the instance ′r  does not satisfies the 
dependency  1

F
θ→  . 

 Assume that ( )1
1f
2

′ ′ >vr . 

 If ( )1
1&
2

′
∈ ≤vr
   , then t ,t θ′ ′′ ′′= . Hence, 

( ) ( )t ,t t ,t
1 1min , min ,θ θ θ θ′ ′′ ′ ′′′′ ′′≥ = =  . 

 
This contradicts the fact that ′r  violates 1

F
θ→  . 

 If  ( )1
1&
2

′
∈ >vr
   , then 

 
( )1 &

1
1&
2

′
∈

′

∈

  > 
 

v
v

r

r
  

 
 . 

 
This inequality is satistied if ( )1 & 1′

∈ =vr
   . 

 If ( )1 & 0′
∈ =vr
   , then 10

2
> , i.e., a contradiction. 

 If ( )10 & 1′
∈< <vr
   , then 

 ( ) ( )1
1 &

1& <log
2

′
∈

′

∈ vv r
r

   
 . 

 

Therefore, ( )1
1&
2

′
∈ >vr
   , i.e., t ,t 1′ ′′ = . Now, 

 
 ( )t ,t t ,t

1min ,θ′ ′′ ′ ′′≥  , 

 

which is a contradiction. We conclude, ( )1
1f
2

′ ′ ≤vr . 

 Suppose that  ′r  does not satisfy 1
F

θ→ →  .  
 Now, the third condition of the conditions given by (10) 
does not hold, i.e.,  
 ( )t ,t t ,t

1min ,θ′ ′′ ′ ′′<  . (13) 

 
Moreover, the first and the second condition of the conditions 
 

 

( )
( )
( )

t ,t t ,t
1

t ,t t ,t
1

t ,t t ,t
1

min , ,

min , ,

min ,

θ

θ

θ

′′ ′ ′ ′′

′′ ′ ′ ′′

′′ ′′ ′ ′′

≥

≥

≥

 

 

 

 (14) 

 
don’t hold simultaneously. 

 Assume that ( )1
1f
2

′ ′ >vr . 
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 If  ( )1
1&
2

′
∈ ≤vr
   , then  t ,t θ′ ′′ ′′= . Hence, 

( ) ( )t ,t t ,t
1 1min , min ,θ θ θ θ′ ′′ ′ ′′′′ ′′≥ = =  , 

 
which contradicts (13). 

 If  ( )1
1&
2

′
∈ >vr
   , then t ,t 1′ ′′ =  and  

 ( )
( )1 &

1 1
1max & , &
2

′
∈

′ ′

∈ ∈

   >    

v

v v
r

r r
  

   
  . 

 
The last inequality is satisfied if 

( ) ( )( )1 1max & , & 1′ ′
∈ ∈ =v vr r
     . 

 If ( ) ( )( )1 1max & , & 0′ ′
∈ ∈ =v vr r
     , then 10

2
> , i.e., a 

contradiction. 
 If ( ) ( )( )1 10<max & , & 1′ ′

∈ ∈ <v vr r
     , then 

 

 ( ) ( ) ( )( )1 1
1 max & , &

1& log
2

′ ′
∈ ∈

′

∈
≥ v vv r r

r
     

 . 

 

Therefore, ( ) ( )( )1 1
1max & , &
2

′ ′
∈ ∈ >v vr r
     , i.e., 

( )1
1&
2

′
∈ >vr
    or ( )1

1&
2

′
∈ >vr
  . Hence, t ,t 1′ ′′ =  or 

t ,t 1′ ′′ = . 
  
 In the first case, the conditions given by (14) are satisfied 
simultaneously, while in the second case, the condition (13) 
does not hold. Hence, a contradiction. We conclude, 

( )1
1f
2

′ ′ ≤vr . 

This completes the proof.                                                         
 
Proof: (for R) 
We write 1

F
θ→   resp. 1

F
θ→ →   instead of f  if f  is a 

fuzzy functional resp. a fuzzy multivalued dependency. 
Consequently, we write 

 ( )& &
∈ ∈

 → 
    

   

resp. 

 ( ) ( )& & &
∈ ∈ ∈

  →     


     
    

 
instead of f ′ , where = U- . 
 As in the case (Y), choose the set { }p,q  to be the domain 
of each of the attributes in U . 
 We fix some [ )0,θ θ′′ ′∈ , where θ ′  is the minimum of the 

strengths of all dependencies that appear in { }f∪F . Assume 

that 1θ ′<  and put ( ) ( )p,q q, p θ ′′= = =s s  to be a similarity 

relation on { }p,q . 
 
( ) ( )a b⇒  Assume that (b) does not hold. 

 Then, there exists some εvr  such that ( ) 1
2ε >vr  , ′∈F and 

( ) 1f
2ε ′ ≤vr  . As in the case (Y), εvr  is joined to some two-

element fuzzy relation instance { }1 2t ,t=r  on ( )R U  and some 
ε , 0 1ε≤ ≤ . 

 Denote ( ) 1W
2ε

 
= ∈ > 

 
 rU v . 

 Suppose that W =∅ . Then, ( ) 1
2ε ≤rv , ∈U . 

 Since ( ) 1f
2ε ′ ≤vr , we have that 

 

( ) ( )1 & & &ε ε ε
∈ ∈ ∈

 − +  
 

v v vr r r

     
    

 

 ( ) ( ) 1& & f
2ε ε

∈ ∈

   ′= → = ≤    
v vr r

   
   

resp. 

 ( ) ( ) ( )1 & & max & , &ε ε ε ε
∈ ∈ ∈ ∈

  − + ⋅     
v v v vr r r r

       
     

 

    ( ) ( ) ( )1 & & & &ε ε ε
∈ ∈ ∈ ∈

  = − + ⋅     
v v vr r r

       
     

 

     
( ) ( )

( )

& & &

1f .
2

ε

ε

∈ ∈ ∈

   = →       

′= ≤

v

v

r

r

     
  

 

Hence, 

 ( ) ( )1 & & &
2 ε ε ε

∈ ∈ ∈

 + ≤ 
 

v v vr r r

     
    

resp. 
 

 ( ) ( ) ( )1 & max & , & &
2 ε ε ε ε

∈ ∈ ∈ ∈

  + ⋅ ≤           
   v v v vr r r r . 

 
Therefore, the fact that ( ) 0ε ≥vr   for all ∈U  yields that 

( ) 1&
2ε ∈ ≥vr

    holds always true. Now, there exist some 

0 ∈ ⊆  U , such that  
  

 ( ) ( ){ } ( )0
1=min &
2ε ε ε

∈
∈ = ≥v v vr r r

 
     . 

This is a contradiction. We conclude, W ≠∅ . 
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 Suppoes that W =U . Then, ( ) 1
2ε >vr  , ∈U . 

Therefore, ( ) 1&
2ε ∈ >vr

   for any ⊆ U . Since ( ) 1f
2ε ′ ≤vr , 

we have that 

 
( )

1 & 1
& ε

ε ∈∈

 + ≤ 
 

v
2v

r
r   




 

resp. 
  

 
( ) ( )1 max & , & 1
& ε ε

ε ∈ ∈∈

  + ≤    
v v

2v
r r

r     

 


. 

 

Now, ( )& 1ε ∈ ≤vr
    yields, 

( )
1 1

2&ε ∈

≥
2vr

  
. Hence, 

( ) 1&
2ε ∈ ≤vr

    resp. ( ) 1max & , &
2ε ε

∈ ∈

   ≤    
v vr r

   
  . This 

means that we always have that ( ) 1&
2ε ∈ ≤vr

   . This is a 

contradiction. We conclude, W ≠U . 
 As in the case (Y), let { }t ,t′ ′ ′′r =  be the two element fuzzy 

relation instance on ( )R U , given by Table 1. 
 We shall prove that ′r  satisfies all dependencies in F  and 
violates the dependency f . 

 Let 2
F

θ→   be any fuzzy functional dependency from the 
set F . We have, 

 ( ) ( ) ( )1 & & &ε ε ε
∈ ∈ ∈

− +v v vr r r

     
    

 

 ( ) ( ) 1& &
2ε

∈ ∈

 = → > 
 

vr

   
  , 

i.e., 

 ( ) ( ) ( )1 & & &
2 ε ε ε

∈ ∈ ∈
+ >v v vr r r

     
   . 

 

Suppose that ( ) 1&
2ε ∈ ≤vr

  . Reasoning as in the case (Y), we 

conclude that there is 0 ∈   such that ( )0
1
2ε ≤vr  . i.e., that 

0 W∉ . Hence, t ,t
0 θ′ ′′ ′′=  and then t ,t θ′ ′′ ′′= . As before, the 

fact that ( )p,q θ ′′=s  yields that t ,t θ′ ′′ ′′≥  for every ⊆ U . 

Now, t ,t θ′ ′′ ′′≥  and then 
 

 ( )t ,t t ,t
2min ,θ θ′ ′′ ′ ′′′′≥ =  . 

This means that ′r  satisfies the dependency 2
F

θ→  . 

 Now, suppose that ( ) 1&
2ε ∈ >vr

  . We obtain, 

  

( ) ( )1 & 1
& ε

ε ∈∈

+ >v
2v

r
r   




. 

Since ( )& 1ε ∈ ≤vr
  , we have that 

( )
1 1

2&ε ∈

≥
2vr

 
. Hence, 

( ) 1&
2ε ∈ >vr

  . Now, ( ) 1 ,
2ε > ∈vr     and then W∈ , 

∈  . In other words, W⊆ . Therefore, t ,t 1′ ′′ = . We 
obtain, 
 ( )t ,t t ,t

21 min ,θ′ ′′ ′ ′′= ≥  . 

This means that ′r  satisfies 2
F

θ→  . 

 Let 2
F

θ→ →   be any fuzzy multivalued dependency from 
the set F . We have, 
 

 ( ) ( ) ( ) ( )1 & & max & , &ε ε ε ε
∈ ∈ ∈ ∈

 − + ⋅  
        

   r r r rv v v v  

 

 ( ) ( ) ( ) 1& & &
2ε

∈ ∈ ∈

  = → >    
vr

     
   , 

i.e., 
 

 ( ) ( ) ( ) ( )1 & max & , & &
2 ε ε ε ε

∈ ∈ ∈ ∈

 + ⋅ > 
 

v v v vr r r r

       
    , 

 
where =U- . 

 Assume that ( ) 1&
2ε ∈ ≤vr

  . Reasoning as in the previous 

case, we conclude that t ,t θ′ ′′ ′′= . Hence, there exists t′′′ ′∈r , 
t t′′′ ′=  such that (6) holds true. This means that the fuzzy 
relation instance ′r  satisfies the dependency 2

F
θ→ →  . 

 Suppose that ( ) 1&
2ε ∈ >rv   . We obtain, 

 

 
( ) ( ) ( )1 max & , & 1
& ε ε

ε ∈ ∈∈

 + > 
 
v v

2v
r r

r     

 


. 

Since 
( )

1 1
2&ε ∈

≥
2vr

 
, we conclude that 

( ) ( )( )M
1max & , &
2ε ε∈ ∈ >v vr r

    . Therefore, ( ) 1&
2ε ∈ >vr

   

or ( )M
1&
2ε ∈ >vr

  . 

 If ( ) 1&
2ε ∈ >vr

  , then, reasoning as in the case (Y), we 

obtain that t ,t 1′ ′′ = , t ,t 1′ ′′ = . Therefore, there exists t′′′ ′∈r , 
t t′′′ ′′= , such that (7) holds true. In other words, ′r  satisfies the 
dependency 2

F
θ→ →  . 

 Similarly, if ( )M
1&
2ε ∈ >vr

  , we have that t ,t 1′ ′′ = . 

Now, there exists t′′′ ′∈r , t t′′′ ′= , such that (7) is valid, i.e., ′r  
satisfies 2

F
θ→ →  . 

 In remans to prove that ′r  violates the dependency 
1

F
θ→   resp. 1

F
θ→ →  . Let 
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 ( ) ( )1 & & &ε ε ε
∈ ∈ ∈

 − +  
 

v v vr r r

     
    

 

 ( ) ( ) 1& & f
2ε ε

∈ ∈

   ′= → = ≤    
v vr r

   
  . 

Hence, 

 ( ) ( )1 & & &
2 ε ε ε

∈ ∈ ∈

 + ≤ 
 

v v vr r r

     
   . 

 

Since ( ) 0ε ≥vr   for ∈ U , we conclude that ( ) 1&
2ε ∈ ≥  

rv . 

Therefore, W⊆ and then t ,t 1′ ′′ = . Now, 

 
( )

1 & 1
& ε

ε ∈∈

 + ≤ 
 

v
2v

r
r   




. 

As, before, we obtain that ( ) 1&
2ε ∈ ≤vr

   , i.e., t ,t θ′ ′′ ′′= . We 

have, 
 ( )t ,t t ,t

1 1min ,θ θ θ θ′ ′′ ′ ′′′′ ′= < ≤ =  . 

Hence, ′r  does not satisfy the dependency  1
F

θ→  . Now, 
suppose that 
 

 ( ) ( ) ( )1 & & max & &ε ε ε ε
∈ ∈ ∈ ∈

  − + ⋅     
v v v ;vr r r r

       
     

 

 ( ) ( ) ( ) 1& & & f
2ε ε

∈ ∈ ∈

    ′= → = ≤      
v vr r

     
   . 

 
We have, 
 

 ( ) ( ) ( )1 & max & & &
2 ε ε ε ε

∈ ∈ ∈ ∈

  + ⋅ ≤    
v v ;v vr r r r

       
    . 

 

Now, ( ) 1&
2ε ∈ ≥  

rv  and then W⊆ , i.e., t ,t 1′ ′′ = . 

Moreover, 
 

 
( ) ( )1 max & & 1

2 & ε ε
ε ∈ ∈∈

  + ≤    
v ;v

v
r r

r     

 


. 

 

Therefore, ( ) ( )( ) 1max & &
2ε ε∈ ∈ ≤v ;vr r

      and hence 

( ) 1&
2ε ∈ ≤vr

   , ( ) 1&
2ε ∈ ≤vr

  . Consequently t ,t θ′ ′′ ′′= , 

t ,t θ′ ′′ ′′= . 
If t′′′ ′∈r and t t′′′ ′= , that reaspning in the same way as in the 

cas (Y), we conclude that (8) holds true. 
 Similarly, if t′′′ ′∈r  and t t′′′ ′′= , we obtain that (9) holds 

true. 
 Therefore, the instance ′r  does not satisfy the 

dependency 1
F

θ→ →  . 

( ) ( )b a⇒  Assume that (a) does not hold. 
 Now, as in the case (Y), there  exists a two-element fuzzy 
relation instance { }1 2t ,t′=r on ( )R U , such that ′r satisfies all 
dependencies from the set F  but violates the dependency f . 

Hence, ′r  violates 1
F

θ→   resp. 1
F

θ→ →  . 
 Reasoning in exactly the same way as in the case (Y), we 
conclude that W ≠∅  and W ≠U , where { }t ,tW 1′ ′′= ∈ = U . 

 Now, we prove that ( )1
1
2

′ >vr  , ′∈ F  and ( )1
1f
2

′ ′ ≤rv , 

where 1
′vr  is defined by 

 ( )1
1 ,1 , W
2

′  ∈ ∈  
vr   , 

 ( )1
10, , W
2

′  ∈ ∈ −  
vr U  . 

 Let ′∈ F  be of the form 
 

 ( ) ( )& &
∈ ∈

→
   
  . 

 
The fuzzy formula corresponds to some fuzzy functional 
dependency 2

F
θ→   from the set F . 

 If ( )1
1
2

′ ≤rv , then 

 ( ) ( ) ( )1 1 1
11 & & &
2

′ ′ ′

∈ ∈ ∈
− + ≤v v vr r r

     
   , 

i.e., 

 ( ) ( ) ( )1 1 1
1 & & &
2

′ ′ ′

∈ ∈ ∈
+ ≤v v vr r r

     
   . 

 

Therefore, ( )1
1&
2

′
∈ ≥vr
   and then t ,t 1′ ′′ = . Moreover, 

 

 
( ) ( )1

1

1 & 1
2 &

′
′ ∈∈

+ ≤v
v

r
r   




. 

 

Now, as before, we conclude that ( )1
1&
2

′
∈ ≤vr
   and hence 

t ,t θ′ ′′ ′′= . We have, 
 
 ( ) ( )t ,t t ,t

2 2 2min ,1 min ,θ θ θ θ θ′ ′′ ′ ′′′′ ′= < ≤ = =  . 

 
This, however, contradictions the fact that the instance ′r  

satisfies  the dependency 2
F

θ→  . Hence, ( )1
1
2

′ >vr  . 

 Now, let ′∈ F be of the form 
 

 ( ) ( ) ( )& & &
∈ ∈ ∈

 → 
 



     
   , 
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where = U- . This fuzzy formula corresponds to some 
fuzzy multivalued dependency 2

F
θ→ →   from the set F . 

 If ( )1
1
2

′ ≤vr  , then 

 

 ( ) ( ) ( ) ( )1 1 1 1
11 & & max & , &
2

′ ′ ′ ′

∈ ∈ ∈ ∈

 − + ⋅ ≤ 
 

v v v vr r r r

       
    , 

i.e., 
 

 ( ) ( ) ( ) ( )1 1 1 1
1 & max & , & &
2

′ ′ ′ ′

∈ ∈ ∈ ∈

 + ⋅ ≤ 
 

v v v vr r r r

       
    . 

 

Now, ( )1
1&
2

′
∈ ≥vr
   and then t ,t 1′ ′′ = . Furtermore, 

  

 
( ) ( ) ( )1 1

1

1 max & , & 1
2 &

′ ′
′ ∈ ∈∈

 + ≤ 
 
v v

v
r r

r     

 


. 

 

We obtain, ( ) ( )( )1 1
1max & &
2

′ ′
∈ ∈ ≤v ;vr r
      and then 

( )1
1&
2

′
∈ ≤vr
  , ( )1

1&
2

′
∈ ≤vr
  . Therefore, t ,t θ′ ′′ ′′=  and 

t ,t θ′ ′′ ′′= . Consequently, the third condition of the conditions 
(11) is not valid and the second condition of the conditions 
(12) is not valid as well. This contradicts the fact that the 

instance instance ′r  satisfies  2
F

θ→ →  . Hence, ( )1
1
2

′ >vr  . 

 It remains to prove that ( )1
1f
2

′ ′ ≤vr . 

 Assume that ′r  violates 1
F

θ→  . 

 Suppose that ( )1
1f
2

′ ′ >vr . We have, 

 

 ( ) ( )1 1 1
1 & & &
2

′ ′ ′

∈ ∈ ∈

 + > 
 

v v vr r r

     
   . 

 

If ( )1
1&
2

′
∈ ≤vr
   , then t ,t θ′ ′′ ′′=  and hence, reasoning in the 

same way as in (Y), we obtain that ( )t ,t t ,t
1min ,θ′ ′′ ′ ′′≥  . This 

contradicts the fact that ′r  does not  satisfy  1
F

θ→  . 

 Let ( )1
1&
2

′
∈ >vr
   . Now, 

 
( ) 1

1

1 & 1
2 &

′
′ ∈∈

 + > 
 

v
v

r
r   




. 

 

We obtain ( )1
1&
2

′
∈ >vr
    and then t ,t 1′ ′′ = . Now, as in the 

case (Y), ( )t ,t t ,t
1min ,θ′ ′′ ′ ′′≥  . This is a contradiction. 

Therefore, ( )1
1f
2

′ ′ ≤vr . 

 Assume that ′r  violates the dependency  1
F

θ→ →  . 
Reasoning in exactly the same way as in the case (Y), we 
obtain that (13) holds true and that first and the second 
condition of the conditions (14) don’t hold at the same time. 

 Let ( )1
1f
2

′ ′ >vr . We have, 

  

 ( ) ( ) ( )1 1 1 1
1 & max & & &
2

′ ′ ′ ′

∈ ∈ ∈ ∈

  + ⋅ >    
v v ;v vr r r r

       
    . 

 

If ( )1
1&
2

′
∈ ≤vr
   , then t ,t θ′ ′′ ′′= . Hence, as in the case (Y), 

( )t ,t t ,t
1min ,θ′ ′′ ′ ′′≥  . This contradicts (13). 

Let ( )1
1&
2

′
∈ >vr
   . Now, t ,t 1′ ′′ =  and  

 

 
( ) ( )1 1

1

1 max & , & 1
2 &

′ ′
′ ∈ ∈∈

  + >    
v v

v
r r

r     

 


. 

 

We obtain, ( ) ( )( )1 1
1max & &
2

′ ′
∈ ∈ >v ;vr r
     . Hence, 

( )1
1&
2

′
∈ >vr
    or ( )1

1&
2

′
∈ >vr
  , i.e., t ,t 1′ ′′ =  or 

t ,t 1′ ′′ = . In the first case, the conditions (14) are satisfied. In 
the second case, the condition (13) is not valid. Hence, a 

contradiction. We conclude, ( )1
1f
2

′ ′ ≤vr . This completes the 

proof.                                                                                        
  

IV. CONCLUSION 
The results presented in this paper can be similarly verified 

for many other individual fuzzy implication operators. Such 
operators may be residuated (R) as well. One could try to vary 
t-norms as well as t-conorms. In particular, it would be nice to 
determine the degree of generality to which our results may be 
applied. 
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